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Abstract— Heterogeneous traffic with a mixture of human-
driven and connected automated vehicles is discussed to study
how the penetration rate and the control design of connected
automated vehicles affect the traffic flow on a large scale.
Continuum traffic models are constructed by incorporating time
delays to take into account the reaction time of human drivers
and the delays in the control loops of connected automated
vehicles. It is shown that Lagrangian delayed continuum models
are suitable for studying heterogeneity, introducing delay, and
taking into account the on-board traffic data used by the
controllers of connected automated vehicles. We show that these
models possess realistic stability properties and are capable
of capturing the large-scale dynamics of vehicle automation-
induced and connectivity-induced heterogeneity.

I. INTRODUCTION

The effect of connected automated vehicles (CAVs) on the
safety and mobility of traffic is a central question in today’s
transportation research. While vehicles, cities and traffic
infrastructure will become increasingly connected in the near
term, it is also clear that until full penetration is achieved
there will exist a period of mixed traffic. Thus, studying
heterogeneous traffic flows is an important research topic.
Traffic flow can be described either by a discrete number of
vehicles (discrete models) or by a continuous distribution of
vehicles along the highways (continuum models). Continuum
models are relevant for studying large-scale networks with a
large number of vehicles. They are useful to investigate the
effect of the penetration rate of CAVs and the effect of their
control design on the large scale. They are also relevant in
traffic forecasting and traffic jam prediction.

Traffic flow can be described in Lagrangian framework
by tracing the motion of individual vehicles, or in Eulerian
framework by observing traffic at fixed locations. The last
century put emphasis on Eulerian models [1], [2], as traffic
was measured in Eulerian fashion via loop detectors at
predetermined locations along the road. Today individual
vehicles gather data by GPS (Global Positioning System)
and other on-board sensors, providing Lagrangian traffic
measurement. Controlling the motion of individual CAVs is
also a Lagrangian approach for regulating traffic flow.

Still, most continuum models in the literature are formu-
lated in Eulerian framework. They also ignore an essential
ingredient: the time delays associated with the reaction time
of human drivers and the delays in the control loops of
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Fig. 1. Illustration of the Lagrangian and Eulerian frameworks for traffic
flow description.

CAVs [3]. These delays are related to individual vehicles,
not locations. The introduction of delays into continuum
models is nontrivial, there are only a few recent attempts in
literature [4], [5], [6]. This paper is devoted to a possible
approach for constructing delayed Lagrangian continuum
models of highway traffic. The stability of the resulting
models is analyzed and emphasis is put on modeling the
automation-induced heterogeneity of the traffic flow.

II. FRAMEWORKS FOR TRAFFIC MODELING

First we discuss the possible choices of independent vari-
ables that give the framework for analytical traffic models.

A. Lagrangian Framework

A potential approach to modeling traffic is tracing the
motion of individual vehicles, which is referred to as the
Lagrangian framework. As illustrated in Fig. 1(a), a vehicle
number n is associated to each vehicle in traffic (with n = 0
being the lead vehicle) and relevant quantities are described
as a function of the vehicle number n and time t. We remark
that it is not necessary to restrict this framework to an
integer number of vehicles. Quantities at non-integer vehicle
numbers represent interpolations between the integer ones,
which enables the construction of continuum traffic models.

The most fundamental quantity in this framework is the
vehicular position X(n, t) (measured in m relative to the da-
tum at t = 0), which can be directly measured by equipping
vehicles with GPS. X(n, t) is a monotonically increasing
function of t and a strictly monotonically decreasing function
of n, since vehicles travel in the direction opposite to their
numbering. Note that we assume a single lane scenario where
vehicles maintain their order, that is, they do not overtake
each other.



B. Eulerian Framework

Another approach for traffic description is the Eulerian
framework illustrated in Fig. 1(b). A certain cross section
of the road at position x is selected for observation. Traffic
measures are described as a function of the position x and
time t. When no vehicle is located at x, the corresponding
quantities can be regarded as interpolations between the
values related to the two neighboring vehicles.

One essential quantity of this framework is the so-called
cumulative flow N(x, t) (measured in vehicles). It indicates
the number of vehicles (more accurately, the vehicle number)
that reach position x by time t [7], [8]. N(x, t) is a monoton-
ically increasing function of t and a strictly monotonically
decreasing function of x, since less vehicles reach positions
farther along the road by time t.

C. Transition between the Frameworks

In Lagrangian framework, we use Roman letters to denote
traffic measures such as velocity v(n, t) (m/s), traffic density
r(n, t) (vehicles/m) and traffic flux Q(n, t) = r(n, t)v(n, t)
(vehicles/s). In Eulerian framework, we use Greek letters:
velocity ν(x, t) (m/s), density ρ(x, t) (vehicles/m) and flux
ϕ(x, t) = ρ(x, t)ν(x, t) (vehicles/s). From practical point of
view, traffic density describes the number of vehicles on a
certain highway segment. Here, density is defined locally for
each vehicle number or position along the road as explained
in Sec. III. Traffic flux indicates the number of vehicles that
pass a certain cross section of the highway over a unit time.

The Roman and Greek notations indicate the same physi-
cal quantity but as a function of different independent vari-
ables. The quantities in one framework can be transformed to
the other. Transition from Eulerian to Lagrangian framework
is done by considering the cross section x where vehicle n
is located by the substitution x = X(n, t). Thus,

r(n, t) = ρ(X(n, t), t) ,

v(n, t) = ν(X(n, t), t) .
(1)

Similarly transition from Lagrangian to Eulerian framework
is achieved by considering the number n of the vehicle that
is located at position x by the substitution n = N(x, t):

ρ(x, t) = r(N(x, t), t) ,

ν(x, t) = v(N(x, t), t) .
(2)

III. CHOICE OF DEPENDENT VARIABLES

Below we give the definition of traffic density in the local
sense and we discuss other possible measures of traffic flow.

A. Local Definition of Traffic Density

The practical (non-local) definition of traffic density is the
number of vehicles distributed on a road segment of unit
length. In the Lagrangian description, one may consider the
road segment between the positions X(m, t) and X(n, t) of
vehicles m and n, whence the density becomes the ratio

r(m, t) ≈ − m− n
X(m, t)−X(n, t)

. (3)

Here the negative sign is necessary to force positivity for
the density r given the convention that the higher vehicle
number is upstream in the traffic flow. For two consecutive
vehicles (say n − 1 and n), the density is equivalent to the
inverse of the distance between them. The local definition of
density is obtained by taking the limit m→ n. This leads to

r(n, t) = − 1

∂nX(n, t)
. (4)

In the Eulerian framework, the density definition considers
the road segment between the positions y and x associated
with vehicle numbers N(y, t) and N(x, t), respectively.
Density is therefore the ratio

ρ(y, t) ≈ −N(y, t)−N(x, t)

y − x
(5)

with the negative sign as before to enforce positivity. Taking
the limit y → x gives the local definition

ρ(x, t) = −∂xN(x, t) . (6)

B. Choice of a Single or Multiple Dependent Variables

In order to describe the traffic flow, appropriate dependent
variables must be selected. In each framework, it is possible
to choose a single dependent variable or a combination of
multiple variables. In the Lagrangian framework, one may
use either the position X(n, t) or the velocity v(n, t) and
density r(n, t), which are related by

∂nX(n, t) = − 1

r(n, t)
,

∂tX(n, t) = v(n, t) .

(7)

Instead of the pair (v, r), one may also use their product, the
flux q, and choose the pair (v, q) or (r, q).

In the Eulerian framework, one may choose the cumulative
flow N(x, t) as a single dependent variable or the pair of
density ρ(x, t) and flux ϕ(x, t), which are related by

∂xN(x, t) = −ρ(x, t) ,
∂tN(x, t) = ϕ(x, t) .

(8)

Instead of the pair (ρ, ϕ), equivalent choices could be the
pairs (ν, ρ) or (ν, ϕ) with velocity ν.

IV. DELAYED CONTINUUM MODELS

Hereinafter we derive continuum traffic models from mod-
els with a discrete number of vehicles. We put emphasis on
including time delays in the models to characterize human
reaction time and delays in the control loops of CAVs [3].

A. Benchmark Discrete Model

Discrete models are intrinsically formulated in Lagrangian
framework, since they are discrete in variable n. One of the
simplest discrete models is the one by Newell and Igarashi et
al. [9], [10], [11]. Accordingly, vehicle n controls its velocity
based on the distance from its predecessor vehicle n− 1:

∂tX(n, t) = V (X(n− 1, t− τ)−X(n, t− τ)) . (9)



Function V defines the distance-velocity relationship (also
referred to as the range policy in the rest of the paper). It
is monotonically increasing: the farther the vehicles move
away from each other, the faster they shall travel. The model
includes the time delay τ : a given vehicle (with fixed vehicle
number n) reacts to the past state of traffic at time t − τ
instead of the instantaneous state at time t in order to account
for the reaction time of its driver or the delay in its control
loop. First we assume identical range policy V and delay τ
for each vehicle (each n), then we address the heterogeneity
of traffic (the n-dependency) at the end of this paper.

Model (9) is a first order differential equation in time t that
contains a time delay τ . The model also involves a unit delay
in variable n, which arises from the discrete nature of the
model. If the unit delay is approximated, one may obtain a
continuum counterpart of the discrete model. Below we give
two different approaches for constructing continuum models
from the discrete model (9). These approaches can be applied
for other (possibly higher order) discrete models as well.

B. Delayed Lighthill-Whitham-Richards (LWR) Model

First, let us consider the approximation

X(n− 1, t)−X(n, t) ≈ −∂nX(n, t) . (10)

Substitution into (9) leads to the continuum model

∂tX(n, t) = V (−∂nX(n, t− τ)) . (11)

Note that keeping higher order terms on the right-hand
side of (10) is also possible, but it leads to more complex
models; see [12] for a third order case with τ = 0 in
Eulerian description. In (11) we consider a first order model
supplemented with the identity

−∂tnX(n, t) + ∂ntX(n, t) = 0 . (12)

Later we use this identity to show that (11)-(12) is in fact
equivalent to the well-known Lighthill-Whitham-Richards
(LWR) model [1], [2], but in the Lagrangian framework with
an additional time delay τ . This Lagrangian form can be
found in [13] for τ = 0.

First, let us write (11)-(12) in terms of the Lagrangian
density r(n, t) and the Lagrangian velocity v(n, t) using (7):

∂t
1

r(n, t)
+ ∂nv(n, t) = 0 ,

v(n, t) = V (1/r(n, t− τ)) = V(r(n, t− τ)) .
(13)

This equation can also be found in [13], [14] for the case
τ = 0 and in [5] for τ > 0. The first row of (13) can be
interpreted as a conservation law for the number of vehicles
participating in traffic. The second row defines the speed-
density relationship via the monotonically decreasing func-
tion V(r) = V (1/r): the denser the traffic gets, the slower
the vehicles travel. Equations (9), (11) and (13) show the
main difference between discrete and continuum approaches:
discrete models use inter-vehicular distance (difference of
positions), while continuum models operate with density
(related to the derivative of positions with respect to n).

Now let us represent the model in Eulerian framework. Let
us substitute (1) into (13), carry out differentiations according
to the chain rule and finally substitute x = X(n, t). This
leads to the classical form of the LWR model in Eulerian
framework using the density ρ(x, t) and the flux ϕ(x, t):

∂tρ(x, t) + ∂xϕ(x, t) = 0 ,

ϕ(x, t) = ρ(x, t)V(ρ(x− ξ, t− τ)) .
(14)

The first equation describes the conservation of vehicles
on the road. The second equation is the model of traffic
dynamics itself: it describes the relationship between flux
and density. Due to the delay, the flux depends on a past
value of the density at time t− τ instead of the instantaneous
value at time t. Time t− τ corresponds to location x− ξ on
the highway (not simply x), where ξ is the displacement of
vehicle n over [t−τ, t]. Note that ξ is a spatial delay in (14)
and it is given below.

Before specifying ξ, we formulate the model in Eulerian
framework in terms of the cumulative flow N(x, t) for the
sake of completeness. By substituting (8) into (14) we obtain

− ∂txN(x, t) + ∂xtN(x, t) = 0 ,

∂tN(x, t) = −∂xN(x, t)V(−∂xN(x− ξ, t− τ)) .
(15)

This formulation can also be found in [7], [13] for the case
τ = 0. Notice that similarly to (12) the first row of (15) is an
identity. This implies that the definitions (4) and (6) of the
densities r(n, t) and ρ(x, t) ensure the automatic fulfillment
of the conservation law of vehicles.

Finally, let us specify the spatial delay ξ. The derivation
of the Eulerian model (14) from the Lagrangian one (13)
results in the following value for ξ:

ξ = X(n, t)−X(n, t− τ) , (16)

which is equivalent to

ξ =

∫ t

t−τ
v(n, t̃)dt̃ . (17)

That is, the spatial delay ξ can be obtained from the solutions
of the Lagrangian models (11) and (13). In Eulerian frame-
work, however, either N(x, t) or ρ(x, t) and ϕ(x, t) should
be used to obtain ξ. Since time t and position x correspond
to the same vehicle number as t− τ and x− ξ, we write

N(x, t) = N(x− ξ, t− τ) . (18)

Via (8), it can be shown that (18) is equivalent to∫ t

t−τ
ϕ(x, t̃)dt̃ =

∫ x

x−ξ
ρ(x̃, t− τ)dx̃ . (19)

These equations implicitly define the spatial delay ξ as a
function of τ and the states N(x, t) or ρ(x, t) and ϕ(x, t).

Note that both Eulerian models, (15) with (18) and (14)
with (19), formulate a partial delay differential equation
(PDDE) with constant time delay and state-dependent spatial
delay. This spatial delay was neglected in the PDDE models
of [4], [5]. Since state-dependent delays make the analysis
of differential equations significantly more difficult [15], it
is more useful to use Lagrangian framework for introducing



delays. This highlights that in fact the classical Eulerian
formulation (14) of the LWR model is the least suitable
form for including time delays. In Eulerian framework one
needs to consider that past events at time t− τ took place
at location x− ξ (not simply x) due to the propagation of
traffic. In Lagrangian framework, however, delays can simply
be added to the model, since vehicle n reacts to the delayed
traffic state associated with the same vehicle number n.

C. A Higher Order Delayed Continuum Model

A more sophisticated continuum approximation of the
discrete model (9) can be given as follows. In the literature
of delayed dynamical systems, time delays are often approx-
imated by first order lags. Using this idea, let us approximate
the unit n-delay in (9) with a unit lag. We rewrite (9) as

∂tX(n+ 1, t) = V (X(n, t− τ)−X(n+ 1, t− τ)) (20)

and then we use the Taylor series expansion

X(n+ 1, t) = X(n, t) + ∂nX(n, t) +
1

2
∂nnX(n, t) + . . . ,

(21)
which can be truncated after first order. This leads to the
following Lagrangian continuum model with unit lag in n:

∂tX(n, t) = V (−∂nX(n, t− τ))− ∂tnX(n, t) . (22)

Note that the difference of positions (the distance) in the
discrete model (9) is again replaced by the position derivative
(related to the density) in the continuum model (22). In
contrast to the delayed LWR model (11), model (22) involves
a second order term (∂tnX) as well. This term was produced
by the first order lag approximation, which increases the
order of the model while removing the delay in n. We will
show in Sec. V that this higher order term provides more
realistic stability properties for the continuum model.

Similarly to the delayed LWR model (11), it is possible
to construct equivalent forms for the continuum model (22).
The Lagrangian form with density and velocity reads

∂t
1

r(n, t)
+ ∂nv(n, t) = 0 ,

v(n, t) = V(r(n, t− τ)) + ∂t
1

r(n, t)
.

(23)

The Eulerian form with density and flux becomes

∂tρ(x, t) + ∂xϕ(x, t) = 0 ,

ϕ(x, t) = ρ(x, t)V(ρ(x− ξ, t− τ)) + ∂x
ϕ(x, t)

ρ(x, t)
,

(24)

and with the cumulative flow it reads

∂tN(x, t) = −∂xN(x, t)V(−∂xN(x− ξ, t− τ))

− ∂x
∂tN(x, t)

∂xN(x, t)
. (25)

where ξ is given by (19) and (18), respectively.
Notice that an additional term arises in (22)-(25) compared

to the delayed LWR model (11)-(15). In the literature, there
are various attempts to specify reasonable additional terms

to the LWR model to get more realistic behavior for its
solutions [16], [17], [18], [19]. Here this term was derived
from the first order lag approximation of a discrete model.

V. STABILITY ANALYSIS

In this section, we analyze the string stability properties
of models (9), (11) and (22). String stability means the
attenuation of velocity fluctuations along a chain of vehicles,
which is directly related to the mitigation of traffic jams
on the highway. That is, string stability is the stability
of solutions with respect to n. In order to analyze string
stability, we linearize the models and write the equations
at the velocity level. Linearization is performed around the
uniform flow v(n, t) ≡ v∗ of constant speed v∗, where the
corresponding uniform distance d∗ is given by V (d∗) = v∗

for the discrete model (9), while the uniform density r∗ of
the continuum models (11) and (22) satisfies V (1/r∗) = v∗.

Linearization of the discrete model (9) and differentiation
with respect to time yields

∂tṽ(n, t) = κ (ṽ(n− 1, t− τ)− ṽ(n, t− τ)) , (26)

where ṽ(n, t) = v(n, t)− v∗ denotes the velocity fluctua-
tions around the uniform flow and κ = V ′(d∗) > 0 is the
derivative of the range policy. Similarly, the linearized coun-
terpart of the continuum models (11) and (22) read

∂tṽ(n, t) = −κ∂nṽ(n, t− τ) , (27)

and
∂tṽ(n, t) = −κ∂nṽ(n, t− τ)− ∂tnṽ(n, t) , (28)

respectively, where κ = V ′(1/r∗) > 0.

A. String Stability Condition

We analyze string stability by assuming harmonic velocity
fluctuations. Note that general velocity fluctuations can also
be decomposed into harmonics. Considering fluctuations of
angular frequency ω > 0, we assume ṽ(n, t) in the form

ṽ(n, t) = vampe
iωteλ(ω)n , (29)

where λ(ω) determines how the velocity fluctuations prop-
agate along a string of vehicles. The real part of λ(ω)
determines whether the fluctuations amplify or decay, and it
has to be negative for all ω > 0 to guarantee string stability.
The imaginary part of λ(ω) is the wave number, which
defines the angular frequency of fluctuations in terms of
the vehicle number n. Note that when physically evaluating
the results of continuum models, solutions are considered
at integer vehicle numbers only. This implies a sampling
with period 1 in terms of the variable n. According to the
Nyquist-Shannon sampling theorem, phenomena of period
smaller than 2 cannot be captured by sampling with period 1.
Therefore, angular frequencies (wave numbers) above π
can be disregarded during string stability analysis, and we
formulate the condition for string stability as

<(λ(ω)) < 0 or |=(λ(ω))| > π, ∀ω > 0 . (30)



B. String Stability of the Discrete Model

Substitution of the trial solution (29) into (26) gives the
characteristic equation of the discrete model (9) in the form

iω = κ
(
e−λ(ω) − 1

)
e−iωτ , (31)

which can be rearranged to

eλ(ω) =
κ

iωeiωτ + κ
= T (iω) . (32)

Note that T (iω) = eλ(ω) is the transfer function between the
velocity fluctuations of vehicle n−1 and n [20]. Accordingly,
the string stability condition (30) can also be written as

|T (iω)| =
∣∣∣eλ(ω)∣∣∣ < 1, ∀ω > 0 . (33)

Given (32), this condition is equivalent to

2κτ
sin(ωτ)

ωτ
− 1 < 0, ∀ω > 0 . (34)

For τ = 0, the system is string stable for any κ. For τ > 0,
the critical case ω → 0+ gives the largest left-hand side
in (34), which implies the following string stability condition
for the discrete model (9):

τ < 1/(2κ) . (35)

C. String Stability of the Delayed LWR Model

Substitution of (29) into (27) gives the characteristic
equation of the delayed LWR model (11) in the form

iω = −κλ(ω)e−iωτ . (36)

Note that this can also be obtained from the characteristic
equation (31) of the discrete model by the approxima-
tion e−λ(ω) ≈ 1− λ(ω), which corresponds to (10). Equa-
tion (36) can be rearranged to

λ(ω) = − iωeiωτ

κ
= 1− 1

T (iω)
. (37)

Equations (30) and (37) imply the string stability condition

sin(ωτ) < 0 or
ω| cos(ωτ)|

κ
> π, ∀ω > 0 . (38)

The case τ = 0, which corresponds to the classical, delay-
free LWR model, is marginally string stable, since the left-
hand side of the first inequality gives 0. The marginal
stability is an essential property of the LWR model due
to the hyperbolic nature of the governing PDE. For τ > 0,
however, (38) is not fulfilled in the critical case ω → 0+.
Thus the delayed LWR model (11) is always string unstable,
regardless the value of κ.

D. String Stability of the Higher Order Model

Substitution of (29) into (28) yields the characteristic
equation of the higher order delayed continuum model (22):

iω = −κλ(ω)e−iωτ − iωλ(ω) . (39)

The solution for λ(ω) reads

λ(ω) = − iωeiωτ

iωeiωτ + κ
= T (iω)− 1 , (40)

which can also be obtained from (31) by the approximation
eλ(ω) ≈ 1 + λ(ω) according to (21). The string stability
condition (30) implies

κτ
sin(ωτ)

ωτ
− 1 < 0 or

κω| cos(ωτ)|
(κ− ω sin(ωτ))2 + (ω cos(ωτ))2

> π, ∀ω > 0 .
(41)

For τ = 0, the system is string stable for any κ, similarly to
the discrete model (9). For τ > 0, the critical case ω → 0+

is the most restrictive in terms of the first inequality. This
leads to the string stability condition

τ < 1/κ . (42)

Note that stability condition (42) of the continuum
model (22) differs only by a factor of 2 from stability con-
dition (35) of the corresponding discrete model (9). Recall
that (22) was derived by the first order lag approximation of
the unit n-delay in (9) using first order expansion in (21).
Higher order terms in (21) could be taken into account
similarly. For example, second order expansion gives

∂tX(n, t) = V

(
−∂nX(n, t− τ)− 1

2
∂nnX(n, t− τ)

)
− ∂tnX(n, t)− 1

2
∂tnnX(n, t) . (43)

In fact, it can be shown that (43) has exactly the same
stability condition (35) as the discrete model (9).

VI. CONCLUDING REMARKS

Today’s traffic measurement and control of connected au-
tomated vehicles (CAVs) strongly relies on Lagrangian data
collected by individuals in traffic, which creates a need for
Lagrangian traffic models. We have shown that Lagrangian
description is suitable for modeling human driver reaction
time and feedback delays in CAVs, while complicated state
dependent spatial delays arise in Eulerian models. The La-
grangian framework facilitates the construction of delayed
continuum models from discrete models, although special
care must be taken to obtain realistic stability properties.
Stability analysis revealed that simply adding a delay to
the LWR model exhibits string unstable behavior, while
introducing higher order terms via approximation of discrete
models gives realistic stability conditions. It is even possi-
ble to construct delayed continuum models with equivalent
stability conditions to those of discrete models.

The result of such delayed continuum models is illustrated
in Fig. 2, where (22) is simulated. The leader’s speed profile
shown by black is assumed as boundary condition and the
response of 10 identical vehicles is simulated. The range
policy V (d) = max(0,min(κ(d− dst), vmax)) is considered
where dst = 10 m is the standstill distance between vehi-
cles, κ = 0.6 s is the inverse of the desired time head-
way between the vehicles and vmax = 30 m/s is the speed
limit [21]. Fig. 2(a) shows that for small enough delay
(τ = 1.3 s < 1/κ), the chain of vehicles responds in a string
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Fig. 2. Simulated response of 10 vehicles via model (22) in (a) string
stable scenario (small delay) and (b) string unstable scenario (large delay).

stable manner and velocity fluctuations are attenuated up-
stream. According to Fig. 2(b), however, the system response
is string unstable for large enough delay (τ = 2 s > 1/κ).

The simulation results show a significant benefit of La-
grangian delayed continuum models: the most general prop-
erties of traffic flow can be captured by a small number
of parameters. Namely, the three parameters dst, κ and τ
are directly related to three properties: the spacing between
vehicles, the time shift between their speed fluctuations and
the string stability of the vehicle chain, respectively.

Lagrangian models can also be used to study heteroge-
neous traffic consisting of human drivers and CAVs. Het-
erogeneity can easily be taken into account in Lagrangian
framework: explicit dependency on the vehicle number n
should be introduced into the model. For example, the first
order delayed continuum model (22) can be modified by
considering different range policies and delays for the various
(human-driven and connected automated) vehicles:

∂tX(n, t) = V (n,−∂nX(n, t− τ(n)))−∂tnX(n, t) . (44)

In a similar manner, other (possibly higher order) Lagrangian
continuum models can also be modified to involve the
diversity of control laws and delays amongst human drivers
and CAVs. While the solutions of Lagrangian models can be
converted into Eulerian traffic measures, it is complicated to
take heterogeneity into account directly by Eulerian models.

Lagrangian delayed continuum models can effectively be
used to simulate a large number of vehicles in heterogeneous
traffic flows. This way, the large-scale effect of the penetra-
tion rate of CAVs and of various control laws of CAVs can
also be examined. These studies are left for future work.
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